Exercise 11

(a) A particle starts by moving to the right along a horizontal line; the graph of its position function is shown in the figure. When is the particle moving to the right? Moving to the left? Standing still?
(b) Draw a graph of the velocity function.

Solution

Part (a)

The particle is moving to the right for $t \in(0,1) \cup(4,6)$, the particle is moving to the left for $t \in(2,3)$, and the particle is standing still for $t \in(1,2) \cup(3,4)$.

Part (b)

The velocity function is the slope of the position function, which consists of straight lines on several intervals of t. For $0<t<1$, the rise is 3 and the run is 1 , so the slope is

$$
m=\frac{3}{1}=3 .
$$

For $1<t<2$, the rise is 0 and the run is 1 , so the slope is

$$
m=\frac{0}{1}=0 .
$$

For $2<t<3$, the rise is -2 and the run is 1 , so the slope is

$$
m=\frac{-2}{1}=-2 .
$$

For $3<t<4$, the rise is 0 and the run is 1 , so the slope is

$$
m=\frac{0}{1}=0 .
$$

For $4<t<6$, the rise is 2 and the run is 2 , so the slope is

$$
m=\frac{2}{2}=1 .
$$

Note that the slope is undefined where there are kinks in the position function, resulting in points of discontinuity in the velocity function.
(meters/second)

